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On the Stability and Hyperstability of a 𝒑-Radical 
Functional Equation Related to Jensen Mappings 

in 2-Banach Spaces 
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Abstract— The aim of this paper is to introduce and solve the following 𝑝-radical functional equation, 

𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥). 

where 𝑓 is a mapping from ℝ into a vector space 𝑋 and 𝑝 ≥ 3 is an odd natural number. Using an analogue version of the fixed point theorem 
 in 2-Banach spaces, we establish some hyperstability results for the considered equation. Also, we study the hyperstability for the 

inhomogeneous 𝑝-radical functional equation related to Jensen mappings, 

𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥) + 𝐺(𝑥, 𝑦). 

 

Index Terms— stability , hyperstability, 2-Banach spaces, radical functional equations.  

——————————      —————————— 

1 INTRODUCTION                                                                     

hroughout this paper, we will denote the set of natural 
numbers by ℕ, the set of real numbers by ℝ and ℝ+ =
[0, ∞) the set of nonnegative real numbers. By ℕ𝑚, 𝑚 ∈ ℕ, 

we will denote the set of all natural numbers greater than or 
equal to 𝑚.  

The notion of linear 2-normed spaces was introduced by S. 
Gähler [22],[23] in the middle of 1960s. We need to recall some 
basic facts concerning 2-normed spaces and some preliminary 
results. 
Definition 1.1 Let 𝑋 be a real linear space with 𝑑𝑖𝑚𝑋 > 1 and 
∥. , . ∥: 𝑋 × 𝑋 → [0, ∞) be a function satisfying the following 
properties:   
1. ∥ 𝑥, 𝑦 ∥= 0 if and only if 𝑥 and 𝑦 are linearly dependent,  
2. ∥ 𝑥, 𝑦 ∥=∥ 𝑦, 𝑥 ∥,  
3. ∥ 𝜆𝑥, 𝑦 ∥= |𝜆| ∥ 𝑥, 𝑦 ∥,  
4. ∥ 𝑥, 𝑦 + 𝑧 ∥≤∥ 𝑥, 𝑦 ∥ +∥ 𝑥, 𝑧 ∥,  
 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝜆 ∈ ℝ. Then the function ∥. , . ∥ is called a 2-
norm on 𝑋 and the pair (𝑋, ∥. , . ∥) is called a linear 2-normed space. 
Sometimes the condition (4) called the triangle inequality. 
Example 1.2 For 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ 𝑋 = ℝ2, the 
Euclidean 2-norm ∥ 𝑥, 𝑦 ∥ℝ2 is defined by  ∥ 𝑥, 𝑦 ∥ℝ2= |𝑥1𝑦2 − 𝑥2𝑦1|. 
Lemma 1.3 Let (𝑋, ∥. , . ∥) be a 2-normed space. If 𝑥 ∈ 𝑋 and 
∥ 𝑥, 𝑦 ∥= 0, for all 𝑦 ∈ 𝑋, then 𝑥 = 0. 
Definition 1.4 A sequence {𝑥𝑘} in a 2-normed space 𝑋 is called a 
convergent sequence if there is an 𝑥 ∈ 𝑋 such that  

lim
𝑘→∞

∥ 𝑥𝑘 − 𝑥, 𝑦 ∥= 0, 
 for all 𝑦 ∈ 𝑋. If {𝑥𝑘} converges to 𝑥, write 𝑥𝑘 → 𝑥 with 𝑘 → ∞ and 
call 𝑥 the limit of {𝑥𝑘}. In this case, we also write 𝑙𝑖𝑚𝑘→∞𝑥𝑘 = 𝑥. 
Definition 1.5 A sequence {𝑥𝑘} in a 2-normed space 𝑋 is said to be 
a Cauchy sequence with respect to the 2-norm if  

lim
𝑘,𝑙→∞

∥ 𝑥𝑘 − 𝑥𝑙 , 𝑦 ∥= 0, 

for all 𝑦 ∈ 𝑋. If every Cauchy sequence in 𝑋 converges to some 
𝑥 ∈ 𝑋, then 𝑋 is said to be complete with respect to the 2-norm. Any 
complete 2-normed space is said to be a 2-Banach space. 
   Now, we state the following results as lemma (See [27] for 
the details).  
Lemma 1.6 Let 𝑋 be a 2-normed space. Then,   

    1.  | ∥ 𝑥, 𝑧 ∥ −∥ 𝑦, 𝑧 ∥ | ≤∥ 𝑥 − 𝑦, 𝑧 ∥ for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,  
    2.  if ∥ 𝑥, 𝑧 ∥= 0 for all 𝑧 ∈ 𝑋, then 𝑥 = 0,  
    3.  for a convergent sequence 𝑥𝑛 in 𝑋,  

𝑙𝑖𝑚
𝑛→∞

∥ 𝑥𝑛, 𝑧 ∥= ‖𝑙𝑖𝑚
𝑛→∞

𝑥𝑛, 𝑧‖ 

for all 𝑧 ∈ 𝑋. 
      The concept of stability for a functional equation arises 
when defining, in some way, the class of approximate 
solutions of the given functional equation, one can ask 
whether each mapping from this class can be somehow 
approximated by an exact solution of the considered equation. 
Namely, when one replaces a functional equation by an 
inequality which acts as a perturbation of the considered 
equation. The first stability problem of functional equation 
was raised by S. M. Ulam [31] in 1940. This included the 
following question concerning the stability of group 
homomorphisms. 
     Let (𝐺1,∗1) be a group and let (𝐺2,∗2) be a metric group with a 
metric 𝑑(. , . ). Given 𝜀 > 0, does there exists a 𝛿 > 0 such that if a 
mapping ℎ: 𝐺1 → 𝐺2 satisfies the inequality  

𝑑(ℎ(𝑥 ∗1 𝑦), ℎ(𝑥) ∗2 ℎ(𝑦)) < 𝛿 

for all 𝑥, 𝑦 ∈ 𝐺1, then there exists a homomorphism 𝐻: 𝐺1 → 𝐺2 with  
𝑑(ℎ(𝑥), 𝐻(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐺1? 

   If the answer is affirmative, we say that the equation of 
homomorphism  ℎ(𝑥 ∗1 𝑦) = ℎ(𝑥) ∗2 𝐻(𝑦) 

is stable. Since then, this question has attracted the attention 
of many researchers. In 1941, D. H. Hyers [24] gave a first 
partial answer to Ulam’s question and introduced the stability 
result as follows: 
Theorem 1.7 [24] Let 𝐸1 and 𝐸2 be two Banach spaces and 
𝑓: 𝐸1 → 𝐸2 be a function such that  

∥ 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) ∥≤ 𝛿 

for some 𝛿 > 0 and for all 𝑥, 𝑦 ∈ 𝐸1. Then the limit  

T 
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𝐴(𝑥): = 𝑙𝑖𝑚
𝑛→∞

2−𝑛𝑓(2𝑛𝑥) 

exists for each 𝑥 ∈ 𝐸1, and 𝐴: 𝐸1 → 𝐸2 is the unique additive 
function such that  ∥ 𝑓(𝑥) − 𝐴(𝑥) ∥≤ 𝛿 

for all 𝑥 ∈ 𝐸1. Moreover, if 𝑓(𝑡𝑥) is continuous in 𝑡 for each fixed 
𝑥 ∈ 𝐸1, then the function 𝐴 is linear. 
    Later, T. Aoki [10] and D. G. Bourgin [11] considered the 
problem of stability with unbounded Cauchy differences. Th. 
M. Rassias [28] attempted to weaken the condition for the 
bound of the norm of Cauchy difference  

∥ 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) ∥ 

and proved a generalization of Theorem 1.7 using a direct 
method (cf. Theorem 1.8):  
Theorem 1.8 [28] Let 𝐸1 and 𝐸2 be two Banach spaces. If 𝑓: 𝐸1 →
𝐸2 satisfies the inequality  

∥ 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) ∥≤ 𝜃(∥ 𝑥 ∥𝑝 +∥ 𝑦 ∥𝑝) 

for some 𝜃 ≥ 0, for some 𝑝 ∈ ℝ with 0 ≤ 𝑝 < 1, and for all 𝑥, 𝑦 ∈
𝐸1, then there exists a unique additive function 𝐴: 𝐸12

 such that  

∥ 𝑓(𝑥) − 𝐴(𝑥) ∥≤
2𝜃

2 − 2𝑝
∥ 𝑥 ∥𝑝 

for each 𝑥 ∈ 𝐸1. If, in addition, 𝑓(𝑡𝑥) is continuous in 𝑡 for each 
fixed 𝑥 ∈ 𝐸1, then the function 𝐴 is linear.  
 After then, Th. M. Rassias [29],[30] motivated Theorem 1.8 as 
follows:  
Theorem 1.9 [29],[30] Let 𝐸1 be a normed space, 𝐸2 be a Banach 
space, and 𝑓: 𝐸1 → 𝐸2 be a function. If f satisfies the inequality 

∥ 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) ∥≤ 𝜃(∥ 𝑥 ∥𝑝 +∥ 𝑦 ∥𝑝) (1.1) 
 for some 𝜃 ≥ 0, for some 𝑝 ∈ ℝ with 𝑝 ≠ 1, and for all 𝑥, 𝑦 ∈ 𝐸1 −
{0𝐸1

}, then there exists a unique additive function 𝐴: 𝐸1 → 𝐸2 such 

that  

∥ 𝑓(𝑥) − 𝐴(𝑥) ∥≤
2𝜃

|2−2𝑝|
∥ 𝑥 ∥𝑝 (1.2) 

 for each 𝑥 ∈ 𝐸1 − {0𝐸1
}. 

      Note that Theorem 1.9 reduces to Theorem 1.7 when 𝑝 = 0. 
For 𝑝 = 1, the analogous result is not valid. Also, J. Brzdek [12] 
showed that estimation (1.2) is optimal for 𝑝 ≥ 0 in the general 
case. 
     Recently, J. Brzdek [16] showed that Theorem 1.9 can be 
significantly improved; namely, in the case 𝑝 < 0, each 
𝑓: 𝐸1 → 𝐸2 satisfying (1.1) must actually be additive, and the 
assumption of completeness of 𝐸2 is not necessary. It is 
regrettable that this result does not remain valid if we restrict 
the domain of 𝑓 (see the further detail in [18]). But then again, 
several mathematicians showed that the fixed point method is 
an another very efficient and convenient tool for proving the 
Hyers-Ulam stability for a quite wide class of functional 
equations (see [17]). Brzdek et al. [14] proved the fixed point 
theorem for a nonlinear operator in metric spaces and used 
this result to study the Hyers-Ulam stability of some 
functional equations in non-Archimedean metric spaces. In 
this work, they also obtained the fixed point result in arbitrary 
metric spaces as follows:  
Theorem 1.10 [14] Let 𝑋 be a nonempty set, (𝑌, 𝑑) be a complete 
metric space, and 𝛬: 𝑌𝑋 → 𝑌𝑋 be a non-decreasing operator 
satisfying the hypothesis 𝑙𝑖𝑚

𝑛→∞
𝛬𝛿𝑛 = 0 

for every sequence {𝛿𝑛}𝑛∈ℕ in 𝑌𝑋 with  𝑙𝑖𝑚
𝑛→∞

𝛿𝑛 = 0. 
Suppose that 𝒯: 𝑌𝑋 → 𝑌𝑋 is an operator satisfying the inequality  
𝑑(𝒯𝜉(𝑥), 𝒯𝜇(𝑥)) ≤ 𝛬(𝛥(𝜉, 𝜇))(𝑥),      𝜉, 𝜇 ∈ 𝑌𝑋, 𝑥 ∈ 𝑋, (1.3) 
 where 𝛥: 𝑌𝑋 × 𝑌𝑋 → ℝ+

𝑋 is a mapping which is defined by  
Δ(𝜉, 𝜇)(𝑥): = 𝑑(𝜉(𝑥), 𝜇(𝑥))      𝜉, 𝜇 ∈ 𝑌𝑋, 𝑥 ∈ 𝑋. (1.4) 

 If there exist functions 𝜀: 𝑋 → ℝ+ and 𝜑: 𝑋 → 𝑌 such that  
𝑑((𝒯𝜑)(𝑥), 𝜑(𝑥)) ≤ 𝜀(𝑥) (1.5) 
 and  

𝜀∗(𝑥): = ∑  𝑛∈ℕ0
(𝛬𝑛𝜀)(𝑥) < ∞ (1.6) 

 for all 𝑥 ∈ 𝑋, then the limit  
𝑙𝑖𝑚
𝑛→∞

((𝒯𝑛𝜑))(𝑥) (1.7) 
 exists for each 𝑥 ∈ 𝑋. Moreover, the function 𝜓 ∈ 𝑌𝑋 defined by  

𝜓(𝑥): = 𝑙𝑖𝑚
𝑛→∞

((𝒯𝑛𝜑))(𝑥) (1.8) 
 is a fixed point of 𝒯 with  

𝑑(𝜑(𝑥), 𝜓(𝑥)) ≤ 𝜀∗(𝑥) (1.9) 
 for all 𝑥 ∈ 𝑋. 

     In 2013, Brzdek [15] gave the fixed point result by applying 
Theorem 1.10 as follows:  
Theorem 1.11 [15] Let 𝑋 be a nonempty set, (𝑌, 𝑑) be a complete 
metric space, 𝑓1, . . . , 𝑓𝑟: 𝑋 → 𝑋 and 𝐿1, . . . , 𝐿𝑟: 𝑋 → ℝ+ be given 
mappings. Suppose that 𝒯: 𝑌𝑋 → 𝑌𝑋 and 𝛬: ℝ+

𝑋 → ℝ+
𝑋 are two 

operators satisfying the conditions  
𝑑(𝒯𝜉(𝑥), 𝒯𝜇(𝑥)) ≤ ∑  𝑟

𝑖=1 𝐿𝑖(𝑥)𝑑(𝜉(𝑓𝑖(𝑥)), 𝜇(𝑓𝑖(𝑥))) (1.10) 
 for all 𝜉, 𝜇 ∈ 𝑌𝑋, 𝑥 ∈ 𝑋 and  
𝛬𝛿(𝑥): = ∑  𝑟

𝑖=1 𝐿𝑖(𝑥)𝛿(𝑓𝑖(𝑥)),      𝛿 ∈ ℝ+
𝑋, 𝑥 ∈ 𝑋. (1.11) 

 If there exist functions 𝜀: 𝑋 → ℝ+ and 𝜑: 𝑋 → 𝑌 such that  
𝑑(𝒯𝜑(𝑥), 𝜑(𝑥)) ≤ 𝜀(𝑥) (1.12) 
 and  

𝜀∗(𝑥): = ∑  ∞
𝑛=0 (𝛬𝑛𝜀)(𝑥) < ∞ (1.13) 

 for all 𝑥 ∈ 𝑋, then the limit (1.7) exists for each 𝑥 ∈ 𝑋. Moreover, 
the function (1.8) is a fixed point of 𝒯 with (1.9) for all 𝑥 ∈ 𝑋.  

 Then by using this theorem, Brzdek [15] improved, 
extended and complemented several earlier classical stability 
results concerning the additive Cauchy equation (in particular 
Theorem 1.9). Over the last few years, many mathematicians 
have investigated various generalizations, extensions and 
applications of the Hyers-Ulam stability of a number of 
functional equations (see, for instance, [1]-[5], [17], [18] and 
references therein); in particular, the stability problem of the 
radical functional equations in various spaces was proved in 
[7, 8, 9, 21, 20, 25, 26]. 
      An analogue of Theorem 1.11 in 2-Banach spaces was 
stated and proved in [6].  
Theorem 1.12 [6] Let 𝑋 be a nonempty set, (𝑌, ∥⋅,⋅∥) be a 2-Banach 
space, 𝑔: 𝑋 → 𝑌 be a surjective mapping and let 𝑓1, . . . , 𝑓𝑟: 𝑋 → 𝑋 and 
𝐿1, . . . , 𝐿𝑟: 𝑋 → ℝ+ be given mappings. Suppose that 𝒯: 𝑌𝑋 → 𝑌𝑋 
and 𝛬: ℝ+

𝑋×𝑋 → ℝ+
𝑋×𝑋 are two operators satisfying the conditions  

∥ 𝒯𝜉(𝑥) − 𝒯𝜇(𝑥), 𝑔(𝑧) ∥≤ 

∑  𝑟
𝑖=1 𝐿𝑖(𝑥) ∥ 𝜉(𝑓𝑖(𝑥)) − 𝜇(𝑓𝑖(𝑥)), 𝑔(𝑧) ∥ (1.14) 

 for all 𝜉, 𝜇 ∈ 𝑌𝑋, 𝑥, 𝑧 ∈ 𝑋 and  
𝛬𝛿(𝑥, 𝑧): = ∑  𝑟

𝑖=1 𝐿𝑖(𝑥)𝛿(𝑓𝑖(𝑥), 𝑧),      𝛿 ∈ ℝ+
𝑋×𝑋, 𝑥, 𝑧 ∈ 𝑋. (1.15) 

 If there exist functions 𝜀: 𝑋 × 𝑋 → ℝ+ and 𝜑: 𝑋 → 𝑌 such that  
∥ 𝒯𝜑(𝑥) − 𝜑(𝑥), 𝑔(𝑧) ∥≤ 𝜀(𝑥, 𝑧) (1.16) 

 and  
𝜀∗(𝑥, 𝑧): = ∑  ∞

𝑛=0 (𝛬𝑛𝜀)(𝑥, 𝑧) < ∞ (1.17) 
 for all 𝑥, 𝑧 ∈ 𝑋, then the limit  
                𝑙𝑖𝑚

𝑛→∞
((𝒯𝑛𝜑))(𝑥) (1.18) 

 exists for each 𝑥 ∈ 𝑋. Moreover, the function 𝜓: 𝑋 → 𝑌 defined by  
𝜓(𝑥): = 𝑙𝑖𝑚

𝑛→∞
((𝒯𝑛𝜑))(𝑥) (1.19) 

 is a fixed point of 𝒯 with  
∥ 𝜑(𝑥) − 𝜓(𝑥), 𝑔(𝑧) ∥≤ 𝜀∗(𝑥, 𝑧) (1.20) 

 for all 𝑥, 𝑧 ∈ 𝑋. 
In this paper, we achieve the general solutions of the 
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following 𝑝-radical functional equation:  

𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥), (1.21) 

 where 𝑝 ≥ 3 is an odd natural number. In addition, we 
discuss the generalized Hyers-Ulam-Rassias stability problem 
and the hyperstability results in 2-Banach spaces by using 
Theorem 1.12 for the cosidered equation and the 
inhomogeneous 𝑝-radical functional equation related to Jensen 
mappings  

 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥) + 𝐺(𝑥, 𝑦). 

2  GENERAL SOLUTION OF EQUATION (1.21) 

      In this section, we give the general solution of functional 
equation (1.21). The proof of the following theorem has been 
patterned on the reasoning in [19].  
Theorem 2.1  Let 𝑌 be a linear space. A function 𝑓: ℝ → 𝑌 satisfies 
the functional equation (1.21) if and only if  

𝑓(𝑥) = 𝐹(𝑥𝑝),      𝑥 ∈ ℝ, (2.1) 
 with some Jensen function 𝐹: ℝ → 𝑌.  

  
Proof. Indeed, It is not hard to check without any problem that 
if 𝑓: ℝ → 𝑌 satisfies (2.1), then it is a solution to (1.21). On the 
other hand, if 𝑓: ℝ → 𝑌 is a solution of (1.21), then we write 
𝐹0(𝑥) = 𝑓( √𝑥

𝑝
), for 𝑥 ∈ ℝ. From (1.21) we obtain that  

𝐹0(𝑥 + 𝑦) + 𝐹0(𝑥 − 𝑦) = 𝑓( √𝑥 + 𝑦
𝑝

) + 𝑓( √𝑥 − 𝑦
𝑝

) 

 = 2𝑓( √𝑥
𝑝

) 

 = 2𝐹0(𝑥) 

 for all 𝑥, 𝑦 ∈ ℝ. It is enough to observe that there is a Jensen 
function 𝐹: ℝ → 𝑌 with 𝐹(𝑥) = 𝐹0(𝑥) for all 𝑥 ∈ ℝ. This 
completes the proof. 

 

3   STABILITY RESULTS OF THE 𝒑-RADICAL FUNCTIONAL 

EQUATION (1.21) 

      In the following two theorems, we use Theorem 1.12 to 
investigate the generalized Hyers-Ulam stability of the 
functional equation (1.21) in 2-Banach spaces. 
Hereafter, we assume that (𝑌, ∥⋅,⋅∥) is a 2-Banach space. 
Theorem 3.1  Let ℎ1, ℎ2: ℝ2 → ℝ+ be two functions such that  
𝒰: = {𝑛 ∈ ℕ: 𝛼𝑛: = 2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝) + 𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1) <
1} ≠ 𝜙, (3.1) 
 where  
𝜆𝑖(𝑛): = 𝑖𝑛𝑓{𝑡 ∈ ℝ+: ℎ𝑖(𝑛𝑥𝑝, 𝑧) ≤ 𝑡  ℎ𝑖(𝑥𝑝, 𝑧),    𝑥, 𝑧 ∈ ℝ} (3.2) 
 for all 𝑛 ∈ ℕ, where 𝑖 = 1,2. Assume that 𝑓: ℝ → 𝑌 satisfies the 
inequality  

∥ 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥), 𝑔(𝑧) ∥≤

ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑦𝑝, 𝑧) (3.3) 
 for all 𝑥, 𝑦, 𝑧 ∈ ℝ where 𝑔: 𝑋 → 𝑌 be a surjective mapping. Then 
there exists a unique function 𝐹: ℝ → 𝑌 that satisfies the equation 
(1.21) such that  
∥ 𝑓(𝑥) − 𝐹(𝑥), 𝑔(𝑧) ∥≤ 𝜆0ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) (3.4) 
 for all 𝑥, 𝑧 ∈ ℝ, where  

𝜆0: = inf
𝑛∈𝒰

{
𝜆1(𝑛𝑝)𝜆2(2𝑛𝑝 − 1)

1 − 𝛼𝑛

}. 

Proof. Replacing 𝑥 by 𝑚𝑥 and 𝑦 by √𝑚𝑝 − 1
𝑝

𝑥 where 𝑥, 𝑦 ∈ ℝ 
and 𝑚 ∈ ℕ, in inequality (3.3), we get  

∥ 𝑓( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
) − 2𝑓(𝑚𝑥) + 𝑓(𝑥), 𝑔(𝑧) ∥≤

ℎ1(𝑚𝑝𝑥𝑝, 𝑧)ℎ2((2𝑚𝑝 − 1)𝑥𝑝, 𝑧) (3.5) 
 for all 𝑥, 𝑧 ∈ ℝ. For each 𝑚 ∈ ℕ, we define the operator 
𝒯𝑚: 𝑌ℝ → 𝑌ℝ by  

𝒯𝑚𝜉(𝑥): = 2𝜉(𝑚𝑥) − 𝜉( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
),      𝜉 ∈ 𝑌ℝ, 𝑥 ∈ ℝ.(3.6) 

 Further put  
𝜀𝑚(𝑥, 𝑧): = ℎ1(𝑚𝑝𝑥𝑝, 𝑧)ℎ2((2𝑚𝑝 − 1)𝑥𝑝, 𝑧),      𝑥, 𝑧 ∈ ℝ, (3.7) 
 and observe that  
𝜀𝑚(𝑥, 𝑧) = ℎ1(𝑚𝑝𝑥𝑝, 𝑧)ℎ2((2𝑚𝑝 − 1)𝑥𝑝, 𝑧) 

≤ 𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧), (3.8) 
 for all 𝑥, 𝑧 ∈ ℝ and all 𝑚 ∈ ℕ. Then the inequality (3.5) takes 
the form  
∥ 𝑓(𝑥) − 𝒯𝑚𝑓(𝑥), 𝑔(𝑧) ∥≤ 𝜀𝑚(𝑥, 𝑧),      𝑥, 𝑧 ∈ ℝ. (3.9) 
 Furthermore, for every 𝑥, 𝑧 ∈ ℝ, 𝜉, 𝜇 ∈ 𝑌ℝ, we obtain  
∥ 𝒯𝑚𝜉(𝑥) − 𝒯𝑚𝜇(𝑥), 𝑔(𝑧) ∥= 

∥ 2𝜉(𝑚𝑥) − 𝜉( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
) − 2𝜇(𝑚𝑥) 

 +𝜇( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
), 𝑔(𝑧) ∥ 

 ≤ 2 ∥ (𝜉 − 𝜇)(𝑚𝑥), 𝑔(𝑧) ∥ +∥ (𝜉 − 𝜇)( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
), 𝑔(𝑧) ∥. 

This brings us to define the operator Λ𝑚: ℝ+
ℝ×ℝ → ℝ+

ℝ×ℝ by  
Λ𝑚𝛿(𝑥, 𝑧) ≔ 2𝛿(𝑚𝑥, 𝑧) + 𝛿 ( √(2𝑚𝑝 − 1)𝑥𝑝

𝑝
, 𝑧), 

∀ 𝛿 ∈ ℝ+
ℝ×ℝ, 𝑥, 𝑧 ∈ ℝ. (3.10) 

 For each 𝑚 ∈ ℕ, the above operator has the form described in 
(1.15) with 𝑓1(𝑥) = 𝑚𝑥, 𝑓2(𝑥) = ( √(2𝑚𝑝 − 1)𝑥𝑝𝑝

) and 𝐿1(𝑥) =
2, 𝐿2(𝑥) = 1 for all 𝑥 ∈ ℝ. By induction, we will show that for 
each 𝑥, 𝑧 ∈ ℝ, 𝑛 ∈ ℕ0, and 𝑚 ∈ 𝒰 we have  
(Λ𝑚

𝑛 𝜀𝑚)(𝑥, 𝑧) ≤ 𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑛 ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧)(3.11) 

 where  
𝛼𝑚 = 2𝜆1(𝑚𝑃)𝜆2(𝑚𝑝) + 𝜆1(2𝑚𝑝 − 1)𝜆2(2𝑚𝑝 − 1). 

From (3.7) and (3.8), we obtain that the inequality (3.11) holds 
for 𝑛 = 0. Next, we will assume that (3.11) holds for 𝑛 = 𝑘, 
where 𝑘 ∈ ℕ. Then we have  
(Λ𝑚

𝑘+1𝜀𝑚)(𝑥, 𝑧) = Λ𝑚((Λ𝑚
𝑘 𝜀𝑚)(𝑥, 𝑧))= 

2(Λ𝑚
𝑘 𝜀𝑚)(𝑚𝑥, 𝑧) + (Λ𝑚

𝑘 𝜀𝑚) ( √(2𝑚𝑝 − 1)𝑥𝑝
𝑝

, 𝑧) 

≤ 2𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑘 ℎ1(𝑚𝑝𝑥𝑝, 𝑧)ℎ2(𝑚𝑝𝑥𝑝, 𝑧) 

   +𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑘 ℎ1((2𝑚𝑝 − 1)𝑥𝑝, 𝑧)ℎ2((2𝑚𝑝 − 1)𝑥𝑝, 𝑧) 

≤ 𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑘 (2𝜆1(𝑚𝑝)𝜆2(𝑚𝑝) 

+𝜆1(2𝑚𝑝 − 1)𝜆2(2𝑚𝑝 − 1))ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) 

= 𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑘+1ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) 

for all 𝑥, 𝑧 ∈ ℝ, 𝑚 ∈ 𝒰. This shows that (3.11) holds for 
𝑛 = 𝑘 + 1. Now we can conclude that the inequality (3.11) 
holds for all 𝑛 ∈ ℕ0. Hence, we obtain  

𝜀𝑚
∗ (𝑥, 𝑧) = ∑  

∞

𝑛=0

(Λ𝑚
𝑛 𝜀𝑚)(𝑥, 𝑧) 

≤ ∑  

∞

𝑛=0

𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)𝛼𝑚
𝑛 ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) 

=
𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝 − 1)ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧)

1 − 𝛼𝑚

< ∞ 

for all 𝑥, 𝑧 ∈ ℝ, 𝑚 ∈ 𝒰. Therefore, according to Theorem 1.12 
with 𝜑 = 𝑓 and 𝑋 = ℝ and using the surjectivity of 𝑔, we get 
that the limit  𝐹𝑚(𝑥): = lim

𝑛→∞
(𝒯𝑚

𝑛𝑓)(𝑥) 

exists for each 𝑥 ∈ ℝ and 𝑚 ∈ 𝒰, and  
∥ 𝑓(𝑥) − 𝐹𝑚(𝑥), 𝑔(𝑧) ∥≤

𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝−1)

1−𝛼𝑚
ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧),    𝑥, 𝑧 ∈ ℝ, 𝑚 ∈ 𝒰. (3.12) 

 To prove that 𝐹𝑚 satisfies the functional equation (1.21), just 
prove the following inequality  
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∥ 𝒯𝑚
𝑛𝑓( √𝑥𝑝 + 𝑦𝑝𝑝

) + 𝒯𝑚
𝑛𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝒯𝑚
𝑛𝑓(𝑥), 𝑔(𝑧) ∥≤

𝛼𝑚
𝑛 ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑦𝑝, 𝑧) (3.13) 

for every 𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑛 ∈ ℕ0, and 𝑚 ∈ 𝒰. Since the case 𝑛 = 0 is 
just (3.3), take 𝑘 ∈ ℕ and assume that (3.13) holds for 𝑛 = 𝑘 
and every 𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑚 ∈ 𝒰. Then, for each 𝑥, 𝑦, 𝑧 ∈ ℝ and 
𝑚 ∈ 𝒰, we get 

∥ 𝒯𝑚
𝑘+1𝑓( √𝑥𝑝 + 𝑦𝑝𝑝

) + 𝒯𝑚
𝑘+1𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝒯𝑚
𝑘+1𝑓(𝑥), 𝑔(𝑧) ∥ 

=∥ 2𝒯𝑚
𝑘𝑓(𝑚 √𝑥𝑝 + 𝑦𝑝𝑝

) − 𝒯𝑚
𝑘𝑓 ( √(2𝑚𝑝 − 1)(𝑥𝑝 + 𝑦𝑝)

𝑝
) 

+2𝒯𝑚
𝑘𝑓(𝑚 √𝑥𝑝 − 𝑦𝑝𝑝

) − 𝒯𝑚
𝑘𝑓( √(2𝑚𝑝 − 1)(𝑥𝑝 − 𝑦𝑝)

𝑝
) 

−4𝒯𝑚
𝑘𝑓(𝑚𝑥) + 2𝒯𝑚

𝑘𝑓( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
), 𝑔(𝑧) ∥≤ 

2 ∥ 𝒯𝑚
𝑘𝑓(𝑚 √𝑥𝑝 + 𝑦𝑝𝑝

) + 𝒯𝑚
𝑘𝑓(𝑚 √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝒯𝑚
𝑘𝑓(𝑚𝑥), 𝑔(𝑧) ∥ 

+∥ 𝒯𝑚
𝑘𝑓( √(2𝑚𝑝 − 1)(𝑥𝑝 + 𝑦𝑝)

𝑝
) + 𝒯𝑚

𝑘𝑓( √(2𝑚𝑝 − 1)(𝑥𝑝 − 𝑦𝑝)
𝑝

)

− 2𝒯𝑚
𝑘𝑓( √(2𝑚𝑝 − 1)𝑥𝑝𝑝

), 𝑔(𝑧) ∥ 

≤ 2𝛼𝑚
𝑘 ℎ1(𝑚𝑝𝑥𝑝, 𝑧)ℎ2(𝑚𝑝𝑦𝑝, 𝑧) 

+𝛼𝑚
𝑘 ℎ1((2𝑚𝑝 − 1)𝑥𝑝, 𝑧)ℎ2((2𝑚𝑝 − 1)𝑦𝑝, 𝑧) 

≤ 𝛼𝑚
𝑘 (2𝜆1(𝑚𝑝)𝜆2(𝑚𝑝) 

+𝜆1(2𝑚𝑝 − 1)𝜆2(2𝑚𝑝 − 1))ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑦𝑝, 𝑧) 

= 𝛼𝑚
𝑘+1ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑦𝑝, 𝑧). 

Thus, by induction, we have shown that (3.13) holds for every 
𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑛 ∈ ℕ0, and 𝑚 ∈ 𝒰. Letting 𝑛 → ∞ in (3.13), we 
obtain the equality  

𝐹𝑚( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝐹𝑚( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝐹𝑚(𝑥),    

 ∀  𝑥, 𝑦 ∈ ℝ, 𝑚 ∈ 𝒰. (3.14) 
 This implies that 𝐹𝑚: ℝ → 𝑌, defined in this way, is a solution 
of the equation  

𝐹(𝑥) = 2𝐹(𝑚𝑥) + 𝐹( √(2𝑚𝑝 − 1)𝑥𝑝𝑝
),      𝑥 ∈ ℝ, 𝑚 ∈ 𝒰. (3.15) 

 Next, we will prove that each 𝑝-radical function 𝐹: ℝ → 𝑌 
satisfying the inequality  
∥ 𝑓(𝑥) − 𝐹(𝑥), 𝑔(𝑧) ∥≤ 𝐿  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧),      𝑥, 𝑧 ∈ ℝ (3.16) 
 with some 𝐿 > 0, is equal to 𝐹𝑚 for each 𝑚 ∈ 𝒰. To this end, 
we fix 𝑚0 ∈ 𝒰 and 𝐹: ℝ → 𝑌 satisfying (3.16). From (3.12), for 
each 𝑥 ∈ ℝ, we get  
∥ 𝐹(𝑥) − 𝐹𝑚0

(𝑥), 𝑔(𝑧) ∥≤ 

∥ 𝐹(𝑥) − 𝑓(𝑥), 𝑔(𝑧) ∥ +∥ 𝑓(𝑥) − 𝐹𝑚0
, 𝑔(𝑧) ∥ 

≤ 𝐿  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) + 𝜀𝑚0
∗ (𝑥, 𝑧) 

≤ 𝐿0  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) ∑  ∞
𝑛=0 𝛼𝑚0

𝑛 ,          (3.17) 

 where 𝐿0: = (1 − 𝛼𝑚0
)𝐿 + 𝜆1(𝑚0

𝑝
)𝜆2(2𝑚0

𝑝
− 1) > 0 and we 

exclude the case that ℎ1(𝑥𝑝, 𝑧) ≡ 0 or ℎ2(𝑥𝑝, 𝑧) ≡ 0 which is 
trivial. Observe that 𝐹 and 𝐹𝑚0

 are solutions to equation (3.15) 

for all 𝑚 ∈ 𝒰. Next, we show that, for each 𝑗 ∈ ℕ0, we have 

∥ 𝐹(𝑥) − 𝐹𝑚0
(𝑥), 𝑔(𝑧) ∥≤ 𝐿0  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) ∑  

∞

𝑛=𝑗

𝛼𝑚0
𝑛 ,    

 ∀𝑥, 𝑧 ∈ ℝ. (3.18) 
 The case 𝑗 = 0 is exactly (3.17). We fix 𝑘 ∈ ℕ and assume that 
(3.18) holds for 𝑗 = 𝑘. Then, in view of (3.17), for each 𝑥, 𝑧 ∈ ℝ, 
we get 

∥ 𝐹(𝑥) − 𝐹𝑚0
(𝑥), 𝑔(𝑧) ∥=∥ 2𝐹(𝑚0𝑥) − 𝐹 ( √(2𝑚0

𝑝
− 1)𝑥𝑝

𝑝

) 

−2𝐹𝑚0
(𝑚0𝑥) + 𝐹𝑚0

( √(2𝑚0
𝑝

− 1)𝑥𝑝
𝑝

) , 𝑔(𝑧) ∥ 

≤ 2 ∥ 𝐹(𝑚0𝑥) − 𝐹𝑚0
(𝑚0𝑥), 𝑔(𝑧) ∥ 

      

+∥ 𝐹 ( √(2𝑚0
𝑝

− 1)𝑥𝑝
𝑝

) − 𝐹𝑚0
( √(2𝑚0

𝑝
− 1)𝑥𝑝

𝑝

) , 𝑔(𝑧) ∥ 

 ≤ 2𝐿0  ℎ1(𝑚0
𝑝

𝑥𝑝, 𝑧)ℎ2(𝑚0
𝑝

𝑥𝑝, 𝑧) ∑  ∞
𝑛=𝑘 𝛼𝑚0

𝑛  

  +𝐿0  ℎ1((2𝑚0
𝑝

− 1)𝑥𝑝, 𝑧)ℎ2((2𝑚0
𝑝

− 1)𝑥𝑝, 𝑧) ∑  

∞

𝑛=𝑘

𝛼𝑚0
𝑛

= 𝐿0  (2ℎ1(𝑚0
𝑝

𝑥𝑝, 𝑧)ℎ2(𝑚0
𝑝

𝑥𝑝, 𝑧) 

+ℎ1((2𝑚0
𝑝

− 1)𝑥𝑝, 𝑧)ℎ2((2𝑚0
𝑝

− 1)𝑥𝑝, 𝑧)) ∑  

∞

𝑛=𝑘

𝛼𝑚0
𝑛  

≤ 𝐿0  𝛼𝑚0
ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) ∑  

∞

𝑛=𝑘

𝛼𝑚0
𝑛  

= 𝐿0  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) ∑  

∞

𝑛=𝑘+1

𝛼𝑚0
𝑛 . 

This shows that (3.18) holds for 𝑗 = 𝑘 + 1. Now we can 
conclude that the inequality (3.18) holds for all 𝑗 ∈ ℕ0. Now, 
letting 𝑗 → ∞ in (3.18), we get  

𝐹 = 𝐹𝑚0
.            (3.19) 

 Thus, we have also proved that 𝐹𝑚 = 𝐹𝑚0
 for each 𝑚 ∈ 𝒰, 

which (in view of (3.12)) yields  
∥ 𝑓(𝑥) − 𝐹𝑚0

(𝑥), 𝑔(𝑧) ∥≤
𝜆1(𝑚𝑝)𝜆2(2𝑚𝑝−1)

1−𝛼𝑚
ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧),    𝑥, 𝑧 ∈ ℝ, 𝑚 ∈ 𝒰. (3.20) 

 This implies (3.4) with 𝐹 = 𝐹𝑚0
 and (3.19) confirms the 

uniqueness of 𝐹.  
  

       The following theorem concerns the hyperstability of 
(1.21) in 2-Banach spaces. Namely, We consider functions 
𝑓: ℝ → 𝑌 fulfilling (1.21) approximately, i.e., satisfying the 
inequality  

∥ 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥), 𝑔(𝑧) ∥≤ 𝜂(𝑥, 𝑦, 𝑧),  

    ∀ 𝑥, 𝑦, 𝑧 ∈ ℝ, (3.21) 
 with 𝜂: ℝ3 → ℝ+ is a given mapping. Then we find a unique 𝑝-
radical function 𝐹: ℝ → 𝑌 which is close to 𝑓. Then, under 
some additional assumptions on 𝜂, we prove that the 
conditional functional equation (1.21) is hyperstable in the 
class of functions 𝑓: ℝ → 𝑌, i.e., each 𝑓: ℝ → 𝑌 satisfying 
inequality (3.21), with such 𝜂, must fulfil equation (1.21). 
 
Theorem 3.2  Let ℎ1, ℎ2 and 𝒰 be as in Theorem 3.1. Assume that  

lim
𝑛→∞

𝜆1(𝑛)𝜆2(𝑛) = 0 (3.22) 

 Then every 𝑓: ℝ → 𝑌 satisfying (3.3) is a solution of (1.21).  
  

Proof. Suppose that 𝑓: ℝ → 𝑌 satisfies (3.3). Then, by Theorem 
3.1, there exists a mapping 𝐹: ℝ → 𝑌 satisfies (1.21) and  

∥ 𝑓(𝑥) − 𝐹(𝑥), 𝑔(𝑧) ∥≤ 𝜆0ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧) (3.23) 
 for all 𝑥, 𝑧 ∈ ℝ, where  

𝜆0: = inf
𝑛∈𝒰

{
𝜆1(𝑛𝑝)𝜆2(2𝑛𝑝 − 1)

1 − 𝛼𝑛

}, 

with  
𝛼𝑛 = 2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝) + 𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1). 

Since, in view of (3.22), 𝜆0 = 0. This means that 𝑓(𝑥) = 𝐹(𝑥) 
for all 𝑥 ∈ ℝ, whence  

 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥),      𝑥, 𝑦 ∈ ℝ 

which implies that 𝑓 satisfies the functional equation (1.21) 
on ℝ. 
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4   SOME PARTICULAR CASES 

       According to above theorems, we derive some particular 
cases from our main results.  
Corollary 4.1  Let ℎ1, ℎ2: ℝ2 → (0, ∞) be as in Theorem 3.1 such 
that  

 

𝑙𝑖𝑚
𝑛→∞

  𝑖𝑛𝑓 𝑠𝑢𝑝
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑝−1)𝑥𝑝,𝑧)+2ℎ1(𝑛𝑝𝑥𝑝,𝑧)ℎ2(𝑛𝑝𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
= 0. (4.1) 

 Assume that 𝑓: ℝ → 𝑌 satisfies (1.21). Then there exist a unique 𝑝-
radical function 𝐹: ℝ → 𝑌 and a unique constant 𝜅 ∈ ℝ+ with  

∥ 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥), 𝑔(𝑧) ∥

≤ 𝜅  ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧),  
∀  𝑥, 𝑧 ∈ ℝ. (4.2) 
Proof. By the definition of 𝜆𝑖(𝑛) in Theorem 3.1, we observe 
that  

2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝) = 2 sup
𝑥,𝑧∈ℝ

ℎ1(𝑛𝑝𝑥𝑝, 𝑧)ℎ2(𝑛𝑝𝑥𝑝, 𝑧)

ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧)
 

≤ 2 sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑝−1)𝑥𝑝,𝑧)+2ℎ1(𝑛𝑝𝑥𝑝,𝑧)ℎ2(𝑛𝑝𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
 (4.3) (4.3)  

 and  
𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1)

= sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝 − 1)𝑥𝑝, 𝑧))ℎ2((2𝑛𝑝 − 1)𝑥𝑝, 𝑧))

ℎ1(𝑥𝑝, 𝑧)ℎ2(𝑥𝑝, 𝑧)
 

  

≤ sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑝−1)𝑥𝑝,𝑧)+ℎ1(𝑛𝑝𝑥𝑝,𝑧)ℎ2(𝑛𝑝𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
 (4.4) (4.4)  

 Combining inequalities (4.3) and (4.4), we get  
2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝) + 𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1) 

 ≤ 3 sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑝−1)𝑥𝑝,𝑧)+2ℎ1(𝑛𝑝𝑥𝑝,𝑧)ℎ2(𝑛𝑝𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
.

 (4.5) 
Write  

 𝛾𝑛: = sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑝−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑝−1)𝑥𝑝,𝑧)+2ℎ1(𝑛𝑝𝑥𝑝,𝑧)ℎ2(𝑛𝑝𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
. 

From (4.1), there is a subsequence {𝛾𝑛𝑘
} of a sequence {𝛾𝑛} such 

that lim𝑘→∞𝛾𝑛𝑘
= 0, that is,  

 

lim
𝑘→∞

  sup
𝑥,𝑧∈ℝ

ℎ1((2𝑛𝑘
𝑝

−1)𝑥𝑝,𝑧)ℎ2((2𝑛𝑘
𝑝

−1)𝑥𝑝,𝑧)+2ℎ1(𝑛𝑘
𝑝

𝑥𝑝,𝑧)ℎ2(𝑛𝑘
𝑝

𝑥𝑝,𝑧)

ℎ1(𝑥𝑝,𝑧)ℎ2(𝑥𝑝,𝑧)
= 0. (4.6) (4.6) 

 From (4.5) and (4.6), we find that  

lim
𝑘→∞

  𝜆1(2𝑛𝑘
𝑝

− 1)𝜆2(2𝑛𝑘
𝑝

− 1) + 2𝜆1(𝑛𝑘
𝑝

)𝜆2(𝑛𝑘
𝑝

) = 0. (4.7) 

 This implies  

lim
𝑘→∞

  
𝜆1(𝑛𝑘

𝑝
)𝜆2(2𝑛𝑘

𝑝
− 1)

1 − 𝜆1(2𝑛𝑘
𝑝

− 1)𝜆2(2𝑛𝑘
𝑝

− 1) − 2𝜆1(𝑛𝑘
𝑝

)𝜆2(𝑛𝑘
𝑝

)

= lim
𝑘→∞

𝜆1(𝑛𝑘
𝑝

)𝜆2(2𝑛𝑘
𝑝

− 1): = 𝜅 

which means that 𝜆0 defined in Theorem 3.1 is equal to 𝜅. 
 
Corollary 4.2  Let 𝜃 ≥ 0, 𝑠, 𝑡, 𝑟 ∈ ℝ such that 𝑠 + 𝑡 < 0. Suppose 
that 𝑓: ℝ → 𝑌 satisfies the inequality  

∥ 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥), 𝑔(𝑧) ∥≤

𝜃|𝑥𝑝|𝑠  |𝑦𝑝|𝑡   |𝑧|𝑟 ,      𝑥, 𝑦, 𝑧 ∈ ℝ\{0}. (4.8) 
 Then 𝑓 satisfies (1.21) on ℝ\{0}.  
Proof. The proof follows from Theorem 3.1 by defining 

ℎ1, ℎ2: ℝ2\{(0,0)} → ℝ+ by ℎ1(𝑥𝑝, 𝑧) = 𝜃1|𝑥𝑝|𝑠|𝑧|𝑟1 and 

ℎ2(𝑦𝑝, 𝑧) = 𝜃2|𝑦𝑝|𝑡|𝑧|𝑟2 , with 𝜃1, 𝜃2 ∈ ℝ+ and 𝑠, 𝑡, 𝑟1, 𝑟2 ∈ ℝ such 
that 𝜃1𝜃2 = 𝜃, 𝑟1 + 𝑟2 = 𝑟 and 𝑠 + 𝑡 < 0. 
For each 𝑛 ∈ ℕ, we have  

 
𝜆1(𝑛) = inf{𝑡 ∈ ℝ+: ℎ1(𝑛𝑥𝑝, 𝑧) ≤ 𝑡  ℎ1(𝑥𝑝, 𝑧),    𝑥, 𝑧 ∈ ℝ} 

= inf{𝑡 ∈ ℝ+: 𝜃1| √𝑛
𝑝

𝑥|𝑝𝑠|𝑧|𝑟1 ≤ 𝑡  𝜃1|𝑥|𝑝𝑠|𝑧|𝑟1 ,    𝑥, 𝑧 ∈ ℝ\{0}} 

    = 𝑛𝑠. 
 Also, we have 𝜆2(𝑛) = 𝑛𝑡 for all 𝑛 ∈ ℕ. Clearly, we can find 
𝑛0 ∈ ℕ such that  
𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1) + 2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝) = (2𝑛𝑝 − 1)𝑠+𝑡 +
2(𝑛𝑝)𝑠+𝑡 < 1,      𝑛 ≥ 𝑛0. (4.9) 
 According to Theorem 3.1, there exists a unique radical 
function 𝐹: ℝ\{0} → 𝑌 such that  

∥ 𝑓(𝑥) − 𝐹(𝑥), 𝑔(𝑧) ∥≤ 𝜃𝜆0|𝑥|𝑝(𝑠+𝑡)|𝑧|𝑟 (4.10) 
 for all 𝑥, 𝑧 ∈ ℝ\{0}, where  

𝜆0: = inf
𝑛≥𝑛0

{
𝜆1(𝑛𝑝)𝜆2(2𝑛𝑝 − 1)

1 − 𝜆1(2𝑛𝑝 − 1)𝜆2(2𝑛𝑝 − 1) − 2𝜆1(𝑛𝑝)𝜆2(𝑛𝑝)
}. 

On the other hand, Since 𝑠 + 𝑡 < 0, one of 𝑠, 𝑡 must be 
negative. Assume that 𝑡 < 0. Then  

lim
𝑛→∞

𝜆1(𝑛)𝜆2(𝑛) = lim
𝑛→∞

𝑛𝑠+𝑡 = 0. (4.11) 

 Thus by Theorem 3.2, we get the desired results.  
 

    The next corollary prove the hyperstability results for the 
inhomogeneous 𝑝-radical functional equation.  
Corollary 4.3  Let 𝜃, 𝑠, 𝑡, 𝑟 ∈ ℝ such that 𝜃 ≥ 0 and 𝑠 + 𝑡 < 0. 
Assume that 𝐺: ℝ2 → 𝑌 and 𝑓: ℝ → 𝑌 satisfy the inequality  

∥ 𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥) − 𝐺(𝑥, 𝑦), 𝑔(𝑧) ∥≤

𝜃|𝑥𝑝|𝑠  |𝑦𝑝|𝑡   |𝑧|𝑟 ,      𝑥, 𝑦, 𝑧 ∈ ℝ\{0}. (4.12) 
 If the functional equation  

𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) = 2𝑓(𝑥) + 𝐺(𝑥, 𝑦),  

   ∀  𝑥, 𝑦 ∈ ℝ\{0} (4.13) 
 has a solution 𝑓0: ℝ → 𝑌, then 𝑓 is a solution to (4.13).  
Proof. From (4.12), we get that the function 𝐾: ℝ → 𝑌 defined 
by 𝐾: = 𝑓 − 𝑓0 that satisfies (4.8). Consequently, Corollary 4.3 
implies that 𝐾 is a solution to the 𝑝-radical functional equation 
(1.21). Therefore,  

𝑓( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓( √𝑥𝑝 − 𝑦𝑝𝑝

) − 2𝑓(𝑥) − 𝐺(𝑥, 𝑦) =

𝐾( √𝑥𝑝 + 𝑦𝑝𝑝
) + 𝑓0( √𝑥𝑝 + 𝑦𝑝𝑝

)     +𝐾( √𝑥𝑝 − 𝑦𝑝𝑝
) + 𝑓0( √𝑥𝑝 − 𝑦𝑝𝑝

) 

     −2𝐾(𝑥) − 2𝑓0(𝑥) − 𝐺(𝑥, 𝑦) 

 = 0,        𝑥, 𝑦 ∈ ℝ\{0}. 
 which means that 𝑓 is a solution to (4.13). 
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