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On the Stability and Hyperstability of a p-Radical
Functional Equation Related to Jensen Mappings
In 2-Banach Spaces

Muaadh Almahalebi, Sadeq Al-Ali

Abstract— The aim of this paper is to introduce and solve the following p-radical functional equation,

fF(xP +y2) + fF(xP = yP) = 2f (x).
where f is a mapping from R into a vector space X and p > 3 is an odd natural number. Using an analogue version of the fixed point theorem
in 2-Banach spaces, we establish some hyperstability results for the considered equation. Also, we study the hyperstability for the
inhomogeneous p-radical functional equation related to Jensen mappings,

FxP +yP) + f(fxP = yP) = 2f (x) + G (x,).

Index Terms — stability , hyperstability, 2-Banach spaces, radical functional equations.

1 INTRODUCTION

hroughout this paper, we will denote the set of natural

numbers by N, the set of real numbers by R and R, =

[0, o) the set of nonnegative real numbers. By N,,, m € N,
we will denote the set of all natural numbers greater than or
equal to m.

The notion of linear 2-normed spaces was introduced by S.
Gahler [22],[23] in the middle of 1960s. We need to recall some
basic facts concerning 2-normed spaces and some preliminary
results.

Definition 1.1 Let X be a real linear space with dimX > 1 and
Il.,.1: X X X —> [0,00) be a function satisfying the following
properties:
1.1l x,y II= 0 if and only if x and y are linearly dependent,
2z y =y xI,
3N Ax,y =12 x|,
dllx,y+zlslxyll+lxzl,
forall x,y,z € X and A € R. Then the function |l.,.|l is called a 2-
norm on X and the pair (X, |I.,. ) is called a linear 2-normed space.
Sometimes the condition (4) called the triangle inequality.
Example 1.2 For x=(x1,%), v=.V,) EX=R? the
Euclidean 2-norm || x,y |lgz is defined by | x,y llgz= |x1y, — x,¥11-
Lemma 1.3 Let (X,II.,.Il) be a 2-normed space. If x € X and
Il x,y I=0, forall y € X, then x = 0.
Definition 1.4 A sequence {x;} in a 2-normed space X is called a
convergent sequence if there is an x € X such that
lim || x, —x,y I=0,

forall y € X. If {x;;} C(})cﬁzgoerges to x, write x), = x with k — oo and
call x the limit of {x;}. In this case, we also write limy,_ X = x.
Definition 1.5 A sequence {x,.} in a 2-normed space X is said to be
a Cauchy sequence with respect to the 2-norm if

k}liinw Il x —x,y I=0,
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for all y € X. If every Cauchy sequence in X converges to some
x € X, then X is said to be complete with respect to the 2-norm. Any
complete 2-normed space is said to be a 2-Banach space.
Now, we state the following results as lemma (See [27] for
the details).
Lemma 1.6 Let X be a 2-normed space. Then,
Lllxzl-=lyzIl|<lx—yzllforalxy,z¢€X,
2. ifllx,z =0 forall z € X, then x = 0,
3. for a convergent sequence x,, in X,
lim Il %,z lI= || i, z||
forall z € X. . e

The concept of stability for a functional equation arises
when defining, in some way, the class of approximate
solutions of the given functional equation, one can ask
whether each mapping from this class can be somehow
approximated by an exact solution of the considered equation.
Namely, when one replaces a functional equation by an
inequality which acts as a perturbation of the considered
equation. The first stability problem of functional equation
was raised by S. M. Ulam [31] in 1940. This included the
following question concerning the stability of group
homomorphisms.

Let (Gy,%1) be a group and let (G,,*,) be a metric group with a
metric d(.,.). Given € > 0, does there exists a § > 0 such that if a
mapping h: Gy, — G, satisfies the inequality

d(h(x *1 ), h(x) *2 h(y)) <&
forall x,y € Gy, then there exists a homomorphism H: G, = G, with
d(h(x),H(x)) < eforallx € G;?
If the answer is affirmative, we say that the equation of
homomorphism h(x *; y) = h(x) *, H(y)

is stable. Since then, this question has attracted the attention
of many researchers. In 1941, D. H. Hyers [24] gave a first
partial answer to Ulam’s question and introduced the stability
result as follows:

Theorem 1.7 [24] Let E, and E, be two Banach spaces and
f+Ey = E, be a function such that

Ifx+y)—f) - fO) =8
for some 6§ > 0 and for all x,y € E;. Then the limit
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A(x):= lim2™f(2"x)
exists for each x € E;, and "A’E, - E, is the unique additive
function such that || f(x) — A(x) IS S

for all x € E;. Moreover, if f(tx) is continuous in t for each fixed
x € E;, then the function A is linear.

Later, T. Aoki [10] and D. G. Bourgin [11] considered the
problem of stability with unbounded Cauchy differences. Th.
M. Rassias [28] attempted to weaken the condition for the
bound of the norm of Cauchy difference

Ifx+y)=fx)=fO)

and proved a generalization of Theorem 1.7 using a direct
method (cf. Theorem 1.8):
Theorem 1.8 [28] Let E, and E, be two Banach spaces. If f:E; —
E, satisfies the inequality

I fx+y)=fE)=fO IO x IP +1y IP)
for some 8 = 0, for some p € R with 0 < p <1, and for all x,y €
E,, then there exists a unique additive function A: Ey, such that

1FG) =A@ IS 53— I x 1P
for each x € E;. If, in addition, f(tx) is continuous in t for each
fixed x € E, then the function A is linear.
After then, Th. M. Rassias [29],[30] motivated Theorem 1.8 as
follows:
Theorem 1.9 [29],[30] Let E, be a normed space, E, be a Banach
space, and f: E; — E, be a function. If f satisfies the inequality

I fGc+y)=f)—fO IOl x IP +ly IP) (1.1)

for some 6 = 0, for some p € R with p # 1, and for all x,y € E; —
{Og,}, then there exists a unique additive function A:E; — E, such
that

26
[2-2P]

I x 1P

Q) —AR) lI<
for each x € E; — {0g, }.
Note that Theorem 1.9 reduces to Theorem 1.7 when p = 0.

For p = 1, the analogous result is not valid. Also, J. Brzdek [12]
showed that estimation (1.2) is optimal for p > 0 in the general
case.

Recently, J. Brzdek [16] showed that Theorem 1.9 can be
significantly improved; namely, in the case p <0, each
f:E; - E, satisfying (1.1) must actually be additive, and the
assumption of completeness of E, is not necessary. It is
regrettable that this result does not remain valid if we restrict
the domain of f (see the further detail in [18]). But then again,
several mathematicians showed that the fixed point method is
an another very efficient and convenient tool for proving the
Hyers-Ulam stability for a quite wide class of functional
equations (see [17]). Brzdek et al. [14] proved the fixed point
theorem for a nonlinear operator in metric spaces and used
this result to study the Hyers-Ulam stability of some
functional equations in non-Archimedean metric spaces. In
this work, they also obtained the fixed point result in arbitrary
metric spaces as follows:

Theorem 1.10 [14] Let X be a nonempty set, (Y,d) be a complete
metric space, and A:Y* - Y¥* be a non-decreasing operator
satisfying the hypothesis lim A&, = 0

(1.2)
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If there exist functions e: X — R, and ¢: X — Y such that

d((ggo)(x).(/?(x)) <e(x) (1.5)
an

£"(X): = Ynen, (A")(x) < 0 (1.6)
forall x € X, then the limit

Lim ((T"9))(x) (1.7)

exists for'each x € X. Moreover, the function 1 € Y* defined by

Px):= lim ((T")) (%) (1.8)
is a fixed point of T tvith
d(e(), P () = &7(x) (1.9)
forallx € X.

In 2013, Brzdek [15] gave the fixed point result by applying
Theorem 1.10 as follows:
Theorem 1.11 [15] Let X be a nonempty set, (Y,d) be a complete
metric space, fi,...,fr:X =X and Ly,...,L.:X > R, be given
mappings. Suppose that T:Y* - Y* and A:R¥ - RY are two
operators satisfying the conditions

d(TEXx), Tu(x)) < Xizy Li(0)d(§(f; (), u(fi(x))) (1.10)
forall§,u € Y*, x € X and
AS(x): =Y Li(x)6(fi(x)), S e€RY, xeX. (1.11)
If there exist functions e: X — R, and ¢: X — Y such that
d(Tp(x), p(x)) < £(x) (1.12)
and

e (x)i=Ym o (AMe)(x) < (1.13)

for all x € X, then the limit (1.7) exists for each x € X. Moreover,
the function (1.8) is a fixed point of T with (1.9) for all x € X.

Then by using this theorem, Brzdek [15] improved,
extended and complemented several earlier classical stability
results concerning the additive Cauchy equation (in particular
Theorem 1.9). Over the last few years, many mathematicians
have investigated various generalizations, extensions and
applications of the Hyers-Ulam stability of a number of
functional equations (see, for instance, [1]-[5], [17], [18] and
references therein); in particular, the stability problem of the
radical functional equations in various spaces was proved in
[7,8,9,21, 20, 25, 26].

An analogue of Theorem 1.11 in 2-Banach spaces was
stated and proved in [6].

Theorem 1.12 [6] Let X be a nonempty set, (Y, ||-,;-Il) be a 2-Banach
space, g: X — Y be a surjective mapping and let f, ..., f: X — X and
Ly,...,L:X » R, be given mappings. Suppose that T:Y* - Y*
and A: RP* — RX*X are two operators satisfying the conditions
Il TE(x) — Tulx), g(2) I<

i=1 Li() 1 (i) — n(fi(0)), 9(@) |
forall &, u € YX, x,z € X and
A8(x,2):= Y1, Li(X)8(fi(x),2z), Se€RXX x,zeX. (1.15)
If there exist functions e: X x X - R, and ¢: X — Y such that

(1.14)

I To(x) —@x),9(2) I< &(x,2) (1.16)
and

e (x,2): =Yoo (AMe)(x,2) < 0 (1.17)
forall x,z € X, then the limit

Lim ((T"¢))(x) (1.18)

exists for each x € X. Moreover, the function y:X — Y defined by

for every sequence {8, }ney 11 Y* with lim§, = 0. . ‘/)("‘): = li_)?g((T"(p))(x) (1.19)
Suppose that T:YX — Y* is an operator satisfying the inequality is a fixed point of I iith
dTE@), Tu(x) < AUE)x), &uevX, xeX, (1.3) () —¥(x), 9(2) I< £°(x, 2) (1.20)
where A:Y* x Y* — R¥ is a mapping which is defined by forall x, z € X. . .
AG, W) (x): = d(E(x), u(x)) & peYX xex. (1.4) In this paper, we achieve the general solutions of the
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following p-radical functional equation:

F(VxP +y7) + (VP —yP) = 2f (), (1.21)
where p =3 is an odd natural number. In addition, we
discuss the generalized Hyers-Ulam-Rassias stability problem
and the hyperstability results in 2-Banach spaces by using
Theorem 1.12 for the cosidered equation and the
inhomogeneous p-radical functional equation related to Jensen

mappings

F/xP +yP) + F(R/xP —yP) = 2f () + G (x, p).

2 GENERAL SOLUTION OF EQUATION (1.21)

In this section, we give the general solution of functional
equation (1.21). The proof of the following theorem has been
patterned on the reasoning in [19].

Theorem 2.1 Let Y be a linear space. A function f:R — Y satisfies
the functional equation (1.21) if and only if
f(x) =F(xP), =x€R,

with some Jensen function F:R - Y.

(2.1)

Proof. Indeed, It is not hard to check without any problem that
if f:R —= Y satisfies (2.1), then it is a solution to (1.21). On the
other hand, if f:R =Y is a solution of (1.21), then we write
Fy(x) = f(¥x), for x € R. From (1.21) we obtain that
Fox +y) + Fo(x —y) = fGfx +y) + f(fx = y)
=2f(Vx)
=2Fy(x)
for all x,y € R. It is enough to observe that there is a Jensen
function F:R—-Y with F(x) = Fy(x) for all x € R. This
completes the proof.

3 STABILITY RESULTS OF THE p-RADICAL FUNCTIONAL
EQUATION (1.21)

In the following two theorems, we use Theorem 1.12 to
investigate the generalized Hyers-Ulam stability of the
functional equation (1.21) in 2-Banach spaces.

Hereafter, we assume that (Y, lI-,Il) is a 2-Banach space.
Theorem 3.1 Let hy, hy: R* - R, be two functions such that
U:={n € N:a,;: = 24, (nP)A,(nP) + 1, (2n? — 1)A,(2n? — 1) <
1} # ¢, (3.1)
where

Am):=inf{t € Ry:hy(nx?,z) <t hy(xP,z), x,z€ R} (3.2)
for all n €N, where i = 1,2. Assume that f:R =Y satisfies the
inequality

I F(3/xP +yP) + F(3/xP —y7) = 2f (x),9(2) II<

hi (xP, 2)h, (YP, 2) (3.3)
for all x,y,z € R where g:X - Y be a surjective mapping. Then
there exists a unique function F:R — Y that satisfies the equation
(1.21) such that

I FGO) = F(), 9(2) IS Aohy (7, 2)hy (27, 2)

forall x,z € R, where
(A (nP)A(2nP — 1)
Ag: = inf { }
neu 1 _ a’n

Proof. Replacing x by mx and y by YmP — 1x where x,y € R
and m € N, in inequality (3.3), we get

(3.4)
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I F(Y/@mP = 1)x?) - 2f (mx) + f(x), 9(2) II<
h,(mPx?,z)h,((2mP — 1)x?, z) (3.5)
for all x,z€ R. For each m € N, we define the operator
T YR > YR by

T (x): = 28 (mx) — E(R/(2mP — 1)xP),

Further put

EeYR xeR(3.6)

em(x,2):= hy(mPx?,2)h,((2mP — 1)xP,z), x,z€R, (3.7)
and observe that

en(x,2) = hl(m”xp,z)hz((2m7‘7 — 1)x”,z)

< A, (mP)A,(2mP — 1)h,(xP, 2)h,(xP, 2), (3.8)

for all x,z € R and all m € N. Then the inequality (3.5) takes
the form

I f(x) = Tnf (), 9(2) IS en(x,2), x,z€ER.
Furthermore, for every x,z € R, &, u € YR we obtain
Il T3n& (x) — Tpp(x), g (2) II=

I 28 (mx) — &(5/(2mP — D)xP) — 2u(mx)
+u(Y@m? = DxP), g(2) |
<21 (€ —wmx),g(2) Il +1l € —w) (Y CmP — DxP), g(2) Il.
This brings us to define the operator A,,: RE*R —» REXR by
Ny 6(x,z) :=28(mx,z) + 6 (p\/ (2mp — 1)x1’,z),
v eERMR x,z€eR. (3.10)
For each m € N, the above operator has the form described in
(1.15) with fi(x) =mx, f,(x) = (p./(ZmP — 1)xp) and L,(x) =
2, Ly(x) =1 for all x € R. By induction, we will show that for
each x,z € R, n € Ny, and m € U we have
(A% en)(x,2) < A, (MP)A,(2mP — Dajyhy (xP, 2)hy (xP, 2)(3.11)
where
Ay = 24, (M)A, (mP) + 1, (2m? — 1)A,(2mP — 1).
From (3.7) and (3.8), we obtain that the inequality (3.11) holds
for n = 0. Next, we will assume that (3.11) holds for n =k,
where k € N. Then we have
(N 26,) (%,2) = A (M) (x, 2))=
2(Wye) (mx, 2) + (W) (V@mP = De?, 2)
< 24, (mP)A,(2mP — 1)ak h,(mPxP, z)h,(mPxP, z)

+,(mP)A,(2mP — Dak h ((2mP — 1)xP, 2)h,((2mP — 1)xP, 2)
< L (MmP)2,2mP — Daf, (24, (mP) A, (mP)
+4,2mP — DA, 2mP — 1)h(xP, 2)h,(xP, 2)
= A, (mP)1,(2mP — )ak h, (xP, z)h,(xP, 2)
for all x,z€ R, m € U. This shows that (3.11) holds for
n=1k+1. Now we can conclude that the inequality (3.11)
holds for all n € N,. Hence, we obtain

En(62) = ) (Mhen)(6,2)
n=0

(3.9)

< Z A (MPYA,(2mP — Dajyhi(xP,2)h,(xP, 2)

_nif(m”)/lz (2mP — 1)h(xP,2)h,(x?,2)
B 1—-a, <@
for all x,z € R, m € U. Therefore, according to Theorem 1.12
with ¢ = f and X = R and using the surjectivity of g, we get
that the limit F,(x):= 11113)10 TR ()
exists for each x € Rand m € U, and
Il f(x) = En(x),9(2) I

A1(mP)A,(2mP -1
%hl(xl’,z)hz(x”,z), (3.12)

To prove that F, satisfies the functional equation (1.21), just
prove the following inequality

x,z€R, meU.
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I T f (WP + yP) + TR f (YxP = yP) = 2T2f (%), 9 (2) <

ol hy (2P, 2)hy (y7, 2) (3.13)
for every x,y,z € R, n € Ny, and m € U. Since the case n = 0 is
just (3.3), take k € N and assume that (3.13) holds for n =k
and every x,y,z € R, m € U. Then, for each x,y,z€ R and
m € U, we get

I Tx+f (WP + %) + Tt f(RfxP = yP) = 2754 £ (20, g(2) |l
=Il 27 f (m%[xP + yP) — T f (K/(zmv D + yv))
+2TKf(mA[xp —y?) = TEF () @mP — D)(xP — yP))

—4Tkf (mx) + 25K f () @mP — DxP), g(2) I<
2 | TEF(mE[xP + yP) + Tk f(mi[/xP — y?) — 235 f (mx), g(2) |l
+HI TEF(@mP =D (P + yP)) + Tk (K[ @mP — 1) (xP — yP))
—27%f (Y @mP = Dx?), g(2) |
< 2af,h,(mPxP, 2)h,(mPy?, z)
+akh,((2mP — 1)xP, z)h,((2mP — 1)yP,z)
< ap (22, (mP) A, (mP)
+4,(2m? — )A,(2mP — 1))h (xP, 2)h,(Y?, 2)
= agthi(x?, 2)hy (y?, 2).
Thus, by induction, we have shown that (3.13) holds for every
x,¥,Z€R, n €N, and m € U. Letting n —» o in (3.13), we
obtain the equality
F(Yx? +yP) + B (W/x? —y?) = 2E,(x),
Vx,yeERmeTU (3.14)
This implies that F,: R = Y, defined in this way, is a solution
of the equation
F(x) = 2F(mx) + F(}/(2mP —DxP), x€Rme U (3.15)
Next, we will prove that each p-radical function F:R =Y
satisfying the inequality
Il f(x) —F(x),g(2) IS L hy(xP,2)h,(x?,2z), x,z€R (3.16)
with some L > 0, is equal to F, for each m € U. To this end,
we fix my € U and F:R - Y satisfying (3.16). From (3.12), for
each x € R, we get
Il F(x) — Fpy (%), g(2) I
I FG) = f(x),9(@) Il +1l f(x) = Fnyy g(2) |l
<L hy(xP,2)h,(xP,2) + &5, (%, 2)
< Lo hy(xP,2)hy(xP,2) X530 Uiy (3.17)
where Lo:= (1 =ty )L + A,(my)2,(2my —1) >0 and we
exclude the case that h,(x?,z) =0 or h,(xP,z) =0 which is
trivial. Observe that F and F,, are solutions to equation (3.15)
for all m € U. Next, we show that, for each j € N, we have

I FG) = g (0,92 1= Lo a7, DR (3%,2) ) s
n=j
Vx,z € R. (3.18)
The case j = 0 is exactly (3.17). We fix k € N and assume that
(3.18) holds for j = k. Then, in view of (3.17), for each x,z € R,
we get

Il F(x) = Fpy (%), (2) lI=ll 2F (mgx) — F (p/(ng - 1)xp)
—2F,,(mgx) + Fy, <p’(2mg - 1)x1’> ,g@) |l

< 2 " F(mox) - Fmo(mox),g(Z) ”
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HIF <”/(2m§ - 1)xp> .y <”/(2mg - 1)xv> 9@ |

< 2Ly hy(myxP, 2)hy(mox?, z) Loy am,

+Ly hy((2mf — 1)xP, z)h,((2m) — 1)xP, ) Z an,
n=k
= Ly (2hy(mgx?, 2)h,(mgx?, z)

+h, ((2mf — DxP, 2)hy((2m) — 1)xP, 2)) Z A,

n=k

<L, amohl(xp,z)hz(x”,z)z an,

n=k
[ee]

n
an,-

= Ly (", (P, 7) )

n=k+1
This shows that (3.18) holds for j =k + 1. Now we can
conclude that the inequality (3.18) holds for all j € N;. Now,
letting j — oo in (3.18), we get

F =F,,. (3.19)

Thus, we have also proved that F, = F,  for each m € U,
which (in view of (3.12)) yields
Il f(x) = Fpy (), 9(2) I

%‘wm&p,z)hz(ﬂ,z), xzZER meU  (3.20)

This implies (3.4) with F=F, and (3.19) confirms the
uniqueness of F.

The following theorem concerns the hyperstability of
(1.21) in 2-Banach spaces. Namely, We consider functions
f:R-Y fulfilling (1.21) approximately, ie., satisfying the
inequality

(P +y7) + £ (VaP = y7) = 2f (%), g(2) 1< n(x.y, 2),

Vxy2z€ER, (3.21)
with 7: R® > R, is a given mapping. Then we find a unique p-
radical function F:R — Y which is close to f. Then, under
some additional assumptions on 7, we prove that the
conditional functional equation (1.21) is hyperstable in the
class of functions f:R-—Y, ie, each f:R—Y satisfying
inequality (3.21), with such n, must fulfil equation (1.21).

Theorem 3.2 Let hy, h, and U be as in Theorem 3.1. Assume that
lim A, (n)A,(n) =0 (3.22)
n—oo

Then every f: R — Y satistying (3.3) is a solution of (1.21).

Proof. Suppose that f:R — Y satisfies (3.3). Then, by Theorem
3.1, there exists a mapping F: R — Y satisfies (1.21) and

I £ () = F(2), 9(2) IS Aohy (2, Dhy(x?,7)  (3.23)
for all x,z € R, where

= infd

a, =24, (nP)A,(nP) + 1,(2n? — 1)A,(2n? - 1).
Since, in view of (3.22), 1, = 0. This means that f(x) = F(x)
for all x € R, whence
F(fxP +yP) + F(5/xP —y?) = 2f(x), xy€R
which implies that f satisfies the functional equation (1.21)
on R.

A ()2, (27 — 1)}
1-a, ’
with

IJSER © 2021
http://www.ijser.org



International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021

ISSN 2229-5518

4 SOME PARTICULAR CASES

According to above theorems, we derive some particular
cases from our main results.
Corollary 4.1 Let hy, hy: R? - (0,0) be as in Theorem 3.1 such
that

P_1)xP P_1)xP PP DD
lim inf sup h1((2nP=1)xP,z)h, ((2nP-1)xP,z2)+2h (NP xP,z2)h, (nPxP,Z) —
n-oo x,2ER h1(xP,z)hy(xP,z)

Assume that f:R — Y satisfies (1.21). Then there exist a unique p-
radical function F: R = Y and a unique constant k € R, with

I/ +y7) + F(3xP —yP) = 2f (), 9(2)

<k hy(x?,z)h,(x?,z),

0.

vV x,z €R. 4.2)
Proof. By the definition of 4;(n) in Theorem 3.1, we observe
that
h,(nx?,z)h,(n"x?, z)

ha (7, 2)h, (x7, 2)

2,(nP)A,(nP) = 2 sup

x,ZER
hq1((2nP-1)xP,2)hy ((2nP-1)xP,2)+2h, (nPxP,z)h, (nPxP,z)
<2su 4.3
x,zEII?R h1(xP,z)hy(xP,z) ( )
and

A (2nP — 1)A,2nP — 1)
hy((2n? = 1)xP, 2))h, ((2n? = 1)xP, 2))

hy(xP,z)h,(xP, Z)

x,ZER

hq((2nP-1)xP,z)h, ((2nP-1)xP,z)+hy (P xP,z)h, (nPxP,z)
hq(xP,z)h,(xP,z)

< sup
x,ZER
Combining inequalities (4.3) and (4.4), we get
24 (nP)A,(nP) + A,(2n? — 1)A,(2n? — 1)
hy((2nP-1)xP,2)h, ((2nP-1)xP,z)+2h, (n"PxP,z)h, (nPxP,2)
hq(xP,z)h,(xP,z) '

(4.4)

< 3sup
x,ZER

(4.5)
Write
hq((2nP-1)xP,z)h, ((2nP-1)xP,z)+2hy (NP xP,2)h, (nPxP,2)
hq1(xP,z)hy(xP,z) !

Yn:= Sup

x,ZER
From (4.1), there is a subsequence {y,, } of a sequence {y,} such

that limy 0 ¥p, =0, that is,

hy ((2nf-1)xP 2)hy (2nf —1D)xP 2)+2hy (nhxP 2)hy (nhxPz)

Ill—rLlo ;‘;16% h1(xP,2)hy(xP,2) 0. (46)
From (4.5) and (4.6), we find that
Jim 2,.(2n} — 1)2,(2nk — 1) + 22, (n))A,(nh) = 0. 4.7)

This implies

i (M)A, (2nf — 1)

m

koo 1 — 2,20 — 1)A,(2n) — 1) — 22, (n}) A, (n})
= Ilimll(ni)/lz(ZnZ —-1):=x

which means that 4, defined in Theorem 3.1 is equal to k.

Corollary 4.2 Let 6 =20, s,t,r € R such that s + t < 0. Suppose
that f: R — Y satisfies the inequality

I/ +y7) + F(JxP = yP) = 2f (), 9(2) <

O1xP|* |yPI" |2I",  x,y,z € R\{0}.

Then f satisfies (1.21) on R\{0}.

Proof. The proof follows from Theorem 3.1 by defining
hy ha: RA{(0,00} > R, by hy(xP,z) = 64]xP|°|z|"™

4.8)

and
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hy,(y?, z) = 0,|y?|t|z|™, with 6,,0, € R, and s,t,1;,7, € R such
that6,0, =6, +r, =rands+t <0.
For each n € N, we have

A (n) = inf{t € R,:h;(nx?,z) <t h (xP,2), x,z€ R}
= inf{t € R,: 0, |Vnx|P*|z|™ < t 6,|x|P*|z|™, x,z € R\{0}}
=n°.
Also, we have 1,(n) = n' for all n € N. Clearly, we can find
ny € N such that
A (2nP — DA, (2nP — 1) + 22, (nP)A,(nP) = (@AY — 1)5+t +
2(mPYStt <1, n=n,. 4.9
According to Theorem 3.1, there exists a unique radical
function F: R\{0} — Y such that
I f(x) = F(x),9(2) IS 020]x[PC+9 2|
for all x, z € R\{0}, where

(4.10)

. A (nP)A,(2n? — 1)

Aoi = Inf {1 —4L(2nP — DA, (2nP — 1) — 2/11(111’)12(111’)}'
On the other hand, Since s+t <0, one of s, t must be
negative. Assume that t < 0. Then

1lli_1)101011(n)/12(n) = rlli_)rrolons” =0.

Thus by Theorem 3.2, we get the desired re(éﬁsﬁs.

(4.11)

The next corollary prove the hyperstability results for the
inhomogeneous p-radical functional equation.
Corollary 4.3 Let 6,s,t,7 € R such that 6 20 and s+t <O0.
Assume that G:R? > Y and f: R — Y satisfy the inequality
I F(/xP +y%) + (/2P = yP) = 2f (x) = G(z.49, 9(2) lI<
OlxP* yPIt |zl x,y,2 € R\{O}, (4.12)
If the functional equation

F(fxP +yP) + F(5/xP = yP) = 2f(x) + G(x, ),

vV x,y € R\{0} (4.13)
has a solution fy: R = Y, then f is a solution to (4.13).
Proof. From (4.12), we get that the function K:R — Y defined
by K:= f — f, that satisfies (4.8). Consequently, Corollary 4.3
implies that K is a solution to the p-radical functional equation
(1.21). Therefore,
F(VxP +y7) + (V2P —yP) = 2f (1) = G(x,y) =
KCTF3) 4 (TT7) 4K (=39 + 1o (=)

2K (x) — 2fo(x) - G (x(x¥)
=0, x,y € R\{0}.

which means that f is a solution to (4.13).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their careful reading of our manuscript and their many
insightful comments and suggestions.

REFERENCES

[1] L. Aiemsomboon and W. Sintunavarat, On a new type of stability of a
radical quadratic functional equation using Brzdek’s fixed point theorem,
Acta Math. Hungar. (2017) 151: 35. https:/ /doi.org/10.1007/s10474-
016-0666-2.

[2] L. Aiemsomboon and W. Sintunavarat, On generalized hyperstability of
a general linear equation, Acta Math. Hungar., 149, 413-422, (2016)

IJSER © 2021
http://www.ijser.org



International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021
ISSN 2229-5518

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

Z. Alizadeh and A. G. Ghazanfari, On the stability of a radical cubic
functional equation in quasi-f-spaces, J. Fixed Point Theory Appl. (2016)
18: 843. https:/ /doi.org/10.1007 /s11784-016-0317-9.

M. Almahalebi, A. Charifi and S. Kabbaj, Hyperstability of a Cauchy
functional equation, Journal of Nonlinear Analysis and Optimization:
Theory Applications, Vol.6, No.2, 127-137, (2015)

M. Almahalebi and C. Park, On the hyperstability of a functional
equation in commutative groups, Journal of Computational Analysis
Applications, 20 (1), 826-833, (2016)

M. Almahalebi and A. Chahbi, Hyperstability of the Jensen functional
equation in ultrametric spaces, Aequat. Math., 91 (4), 647-661, (2017)

M. Almahalebi, On the stability of a generalization of Jensen functional
equation, Acta Math. Hungar. 154 (1), 187-198, (2018)

M. Almabhalebi, Stability of a generalization of Cauchy’s and the quadratic
functional equations, J. Fixed Point Theory Appl. (2018) 20: 12.
https:/ /doi.org/10.1007 /s11784-018-0503-z

M. Almahalebi and A. Chahbi, Approximate solution of p-radical
functional equation in 2-Banach spaces, Acta Mathematica Scientia, 39
(2) , 551-566, (2019)

T. Aoki, On the stability of the linear transformation in Banach spaces, ].
Math. Soc. Japan, 2, 64-66, (1950)

D. G. Bourgin, Classes of transformations and bordering transformations,
Bull. Amer. Math. Soc., 57, 223-237, (1951)

J. Brzdek, A note on stability of additive mappings, in: Stability of
Mappings of Hyers-Ulam Type, Rassias, T.M., Tabor, |. (eds.), Hadronic
Press (Palm Harbor, 1994), pp. 19-22

J. Brzdek, J. Chudziak and Zs. Pales, A fixed point approach to stability
of functional equations, Nonlinear Anal., 74, 6728-6732, (2011)

J. Brzdek and K. Ciepliniski, A fixed point approach to the stability of
functional equations in non-Archimedean metric spaces, Nonlinear Anal.,
74, 6861-6867, (2011).

J. Brzdek, Stability of additivity and fixed point methods, Fixed Point
Theory Appl., 2013, 2013:265, pp.9

J. Brzdek, Hyperstability of the Cauchy equation on restricted domains,
Acta Math. Hungar., 141, 58-67, (2013)

J. Brzdek, L. Caddriu and K. Cieplinski, Fixed point theory and the
Ulam stability, ]. Funct. Spaces, 2014 (2014), Article ID 829419, pp. 16.
J. Brzdek, W. Fechner, M. S. Moslehian and J. Sikorska, Recent
developments of the conditional stability of the homomorphism equation,
Banach J. Math. Anal., 9, 278-327, (2015)

(19]

(20]

[21]

[22]

[23]
[24]

(25]

[26]

[27]
[28]
[29]
(30]

(31]

105

J. Brzdek,Remark 3, In: Report of Meeting of 16th International
Conference on Functional Equations and Inequalities (Bedlewo, Poland,
May 17-23, 2015), p. 196, Ann. Univ. Paedagog. Crac. Stud. Math. 14,
163-202, (2015)

M. Eshaghi Gordji and M. Parviz, On the Hyers-Ulam stability of the
functional equation f(3/x*+7y2) = f(x) + f(¥), Nonlinear Funct.
Anal. Appl., 14, 413-420, (2009)

M. Eshaghi Gordji, H. Khodaei, A. Ebadian and G. H. Kim, Nearly
radical quadratic functional equations in p-2-normed spaces, Abstr. Appl.
Anal. 2012(2012), Article ID 896032.

S. Gdhler, 2-metrische Rdume und ihre topologische Struktur, Math.
Nachr. 26, 115-148, (1963)

S. Gdbhler, Linear 2-normiete Rdumen, Math. Nachr. 28 (1964), 1-43.

D. H. Hyers, On the stability of the linear functional equation, Proc. Natl.
Acad. Sci. US.A., 27, 222-224, (1941)

H. Khodaei, M. Eshaghi Gordji, S. S. Kim and Y. ]. Cho,
Approximation of radical functional equations related to quadratic and
quartic mappings, J. Math. Anal. Appl. 395, 284-297, (2012)

S.S. Kim, Y. J. Cho and M. Eshaghi Gordji, On the generalized Hyers-
Ulam-Rassias stability problem of radical functional equations, J. Inequal.
Appl. 2012, 2012:186.

W. -G. Park, Approximate additive mappings in 2-Banach spaces and
related topics, ]. Math. Anal. Appl. 376, 193-202, (2011)

Th. M. Rassias, On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc., 72, 297-300, (1978)

Th. M. Rassias, Problem 16; 2. Report of the 27th international symposium
on functional equations, Aequationes Math., 39, 292-293, (1990)

Th. M. Rassias, On a modified Hyers-Ulam sequence, ]J. Math. Anal.
Appl,, 158, 106-113, (1991)

S. M. Ulam, Problems in Modern Mathematics, Science Editions, John-
Wiley & Sons Inc. (New York, 1964).

IJSER © 2021
http://www.ijser.org





